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ABSTRACT

A methodology is presented to make an optimal use of the global SST for the prediction of seasonal climates.
First, the space–time extended principal component analysis was applied to the key SST forcing regions, such
as the tropical Pacific and the Atlantic, to establish a low-dimensional phase space model. This allows a nonlinear
prediction, in terms of analogs found in the nearest neighborhood of the state associated with the initial time
of prediction. Second, the predicted results derived independently from those different SST forcing regions are
then linearly combined using the best linear unbiased estimates based on all available verification periods under
a cross-validation scheme. This enables optimal use of the predictive skills inherent to each of the key SST
forcing regions for each climate zone. The proposed methodology is justified by the analysis of the origins of
predictive skills for seasonal predictions based on SST predictors (the geographical distribution of the skill
scores and their time changes). Application was made to the prediction of winter (December–January–February)
surface air temperatures over North America, based on the observed monthly mean data from January 1949 to
December 1996. Significant skill scores were found over most parts of North America. The superiority of nonlinear
prediction was demonstrated. It is concluded that the low-dimensional phase space approach may be used as an
effective tool for seasonal forecasting.

1. Introduction

Seasonal climate may be considered as the statistical
state of the daily weather for a given season over a
specific geographical region. In practice, 3-month means
are commonly used. Thus, the timescale of seasonal
climate goes far beyond the predictability that is defined
in terms of sensitive dependence on the initial atmo-
spheric conditions. Instead, the predictability of sea-
sonal climate is often connected with a forcing field
such as the SST associated with the ENSO. The key to
a truly successful application of an empirical model lies
in the understanding of the underlying physical mech-
anism for the relation between the predictor and the
predictand fields. Unlike the dynamic models that try
to answer how a certain anomaly occurs by simulating
the detailed processes that are necessary to produce the
observed seasonal anomaly, the statistical models di-
rectly try to determine the probability that a certain
anomaly will occur over a specific geographical region
under a known condition, in particular, the space–time
structure of a given forcing, such as the El Niño signals
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in the SST field. The effectiveness of empirical models,
therefore, depends crucially on whether the relevant
components (with respect to space and time scales) to
be used as predictors are suitably incorporated into the
prediction models, and whether the relationships be-
tween the predictors and predictands (which may not
necessarily be linear, particularly when mid- and high
latitudes are concerned) are properly established.

The space–time extended principal component (ST-
PC) models, proposed by Vautard et al. (1996) and based
on multiple singular spectra analysis (MSSA, Plaut and
Vautard 1994), take the advantages of both space–time
extended EOF analysis (Weare and Nasstrom 1982;
Fraedrich et al. 1993) and the analog approaches (Bar-
nett and Preisendorfer 1978; Bergen and Harnack 1982;
Livezey and Barnston 1988). First, the major source of
information contained in the predictor field is condensed
in a relatively low-dimensional phase space, which is
spanned by the leading ST-PCs. Second, analogs are
sought in the phase space spanned by these ST-PCs to
keep the most relevant information for the subsequent
prediction. The most significant feature of the ST-PC
models is the combination of ST-PC analysis and analog
approach. However, the analog method is effective only
when the dimension is sufficiently low because in a
high-dimensional phase space, an extremely large num-
ber of samples is required to define a good analog (Van
den Dool 1994a). Natural analogs are therefore difficult
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to find. In fact, even if a good natural analogue could
be found, it would not necessarily yield good forecasting
on a seasonal scale, due to the intrinsic limit of pre-
dictability and to the fact that the natural analogs found
in physical space involve many different space–time
scales that are not essential to seasonal climate. This,
however, does not mean that the idea of analog is in-
valid. For instance, Barnett and Preisendorfer (1978)
proposed a theoretical frame, on the basis of analogs
for short-term climate prediction, which is conceptually
clear and physically based.

The present paper attempts to apply the idea of an-
alogs in a low-dimensional phase space. In terms of low-
dimensional phase space approach, the analog takes the
form of nearest neighborhood of the initial time of pre-
diction, with a clear awareness of the geometrical struc-
ture of the trajectories and the associated probability
density distribution. As specific meaning is assigned to
the variability represented by the structure of the tra-
jectories in the phase space, the statistical forecasting,
in this sense, goes beyond an application of some ‘‘black
box’’ statistical tools such as the EOF-based linear mod-
els with arbitrary truncations or the neural network. For
convenience, the term ‘‘nearest neighborhood’’ will be
used as a synonym for the analogs that fall into a pre-
scribed neighborhood of the state associated with the
initial time of prediction (see section 3 for details).

The motivation for such an approach came from the
following facts. First, when the global SST is used di-
rectly in an EOF-based prediction scheme, the ENSO
signal is so dominant that the contribution (in terms of
loading) from other regions is often underestimated.
Moreover, one has to deal with a more or less arbitrary
truncation of the EOFs and a relatively large number of
principal components, in order to include signals from
other key regions of SST forcing. This leads to a rather
high-dimensional phase space, which prevents an ef-
fective application of an analog method, due to the lim-
itation of sample size. Second, we have observed that
the time evolution of a specific key SST forcing region,
relevant to the seasonal scales, can often be effectively
described in a low-dimensional phase space. In partic-
ular, the observed ENSO signals can be described in a
three-dimensional phase space derived from tropical Pa-
cific SST fields, implying that the time evolution of the
ENSO may be basically a low-dimensional attractor, as
indicated by the results derived from the dynamic mod-
eling and theoretical studies (see Wang and Fang 1996
and references therein). The possibility for constructing
a low-dimensional phase space from the predictor fields
allows a closer examination of their impact on the sea-
sonal climate over a specific climate zone, in terms of
phase relations, leading to the possibility of nonlinear
and more dynamically based statistical prediction of sea-
sonal climates (in contrast to pure statistical ap-
proaches). Finally, the geographical distribution of the
predictive skills, as well as their time behavior, varies
from one key region of SST forcing to another, such

that the final prediction can be optimized through a lin-
ear or nonlinear combination of the predicted results
derived from different key forcing regions.

The methodology introduced in the present paper con-
sists of the following two steps. First, the ST-PC models
(Vautard et al. 1996, 1999) are applied separately to
individual SST forcing regions, such as the tropical Pa-
cific and the Atlantic, so as to take advantage of non-
linear predictions in low- (typically three-) dimensional
phase space. Second, an optimal linear combination of
the predictions that resulted from each key SST forcing
region is carried out, to minimize the prediction error,
using the best linear unbiased estimates (BLUE; see
Sarda et al. 1996 and the reference therein). As in Vau-
tard et al. (1996), the predictive skills are evaluated
under a cross-validation scheme. Our preliminary ap-
plication of the present method to the prediction of the
winter [December–January–February (DJF)] surface air
temperature (SAT) over North America showed signif-
icant improvement in the skill scores, both in geograph-
ical distribution and in time behavior. The causes for
the present methodology to yield the observed improve-
ments were explored.

The paper is structured as follows. The methodology
will be presented in section 3. Analyzed in sections 4
and 5 are the predictions of the SATs over North Amer-
ica based on predictors derived from the tropical Pacific,
Atlantic, and extratropical North Pacific SSTs, respec-
tively. In section 6, issues regarding the predictors de-
rived from global SST are discussed, and the improved
skill scores are presented as a result of optimal linear
combination of the predictions derived from the above
three regions. Concluding remarks are given in section 7.

2. Data

The global monthly mean sea surface temperature and
the surface air temperature used in the present study are
derived from the same source as in Vautard et al. (1999).
The predictand is the seasonal SAT observed at 164
stations in North America (105 in the United States and
59 in Canada). The original daily data are provided by
the Climate Prediction Center. Monthly mean SATs were
first derived by averaging the daily measurements. A
monthly record is regarded as missing when more than
one-third of the daily records are missing. The seasonal
SAT is the consecutive 3-month mean. In a similar way,
a seasonal SAT record is considered as missing if any
of the three months’ records are missing. The missing
data are not interpolated. Because the prediction is car-
ried out station by station, this does not affect the model
building. The seasonal dataset is quite complete, cov-
ering a time period of 48 years (January 1949–Decem-
ber 1996). The amount of missing seasonal records for
all 164 station is 0.43%.

The predictor field is the monthly mean global SST,
derived originally from the Comprehensive Ocean–At-
mosphere Data Set archive, which were interpolated on
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108 3 108 grids, as in Vautard et al. (1996). The dataset
covers a period from January 1949 to July 1997. The
annual cycle and the interannual linear trends are re-
moved from both the predictor (SST) and predictand
(SAT) fields, as in Vautard et al. (1999). The anomalies
(departure from the climate means) are used for all pre-
diction models.

The data used are divided into learning and verifi-
cation sets, denoted by VL and VV, respectively. All
calculations for the subsequent model building are de-
rived from VL only. The data in VV are used only for
evaluating the predictive skill.

It should be pointed out that the linear trend, calcu-
lated on each grid after the annual cycle is removed, is
related either to artificial factors (associated with mea-
surements) or to variabilities whose timescales are
equivalent to or larger than a century, which is not rel-
evant to seasonal prediction. The amplitude of the linear
trend is very small, however, and may give rise to a
shifting of the center of the trajectories in phase space
and thus affect the search for closest neighbors for a
nonlinear prediction. Therefore, it is a necessary step,
in the present context, to remove the linear trend. This
does not influence the dynamics of the seasonal to in-
terannual scales that are relevant to seasonal prediction.

3. Methodology

The basic ideas of the present methodology are de-
rived from the ST-PC models (Vautard et al. 1996, 1999)
and the hybridization of different models using the
BLUE (see Sarda et al. 1996 and references therein),
except that the nonlinear prediction plays a central role,
in the present context, due to the use of a low-dimen-
sional phase space constructed from the key SST forcing
regions. Nonlinear prediction in low-dimensional space
has been an active research area in recent decades [see,
e.g., Elsner and Tsonis (1992) and Abarbanel et al.
(1993) for a review]. In the present context, however,
the phase space is a coordinate system describing the
time evolution of the predictors, which in turn are used
to forecast the predictand, according to their phase re-
lation and probability measure. In the following, we
shall present the methodology in three steps: namely,
the construction of a proper low-dimensional phase
space from a given predictor field, the establishment of
the prediction models, and the optimization of the pre-
dictions from different sources.

a. Construction of a low-dimensional phase space

Many studies indicate that the major source of the
predictive skills for seasonal climate is derived from the
SST field (Barnett 1981; Barnett and Preisendorfer
1987; Barnston 1994; Barnston and Smith 1996; Vau-
tard et al. 1996). However, it is difficult to embed the
global SST variability in a low-dimensional phase
space, because each key SST forcing region has its own

relative independent part of variability on the seasonal
scales. Thus, to work in a low-dimensional phase space,
it is necessary to divide the global SST field into a few
key forcing regions, according to their dominant space–
time patterns that have a certain impact on seasonal
climate.

The concept of phase space, used in the present con-
text, is derived from the dynamical system theory and
the associated time series analysis [see Eckmann and
Ruelle (1985), Sauer et al. (1991), and Abarbanel et al.
(1993) for reviews, and Wallace et al. (1993), Fraedrich
et al. (1993), and Wang et al. (1995) for atmospheric
applications]. The starting point, assuming that the ob-
served low-frequency variabilities are derived from a
low-dimensional attractor, is what we can learn about
the underlying system based on observational data and
how much we can benefit for the prediction of seasonal
climate.

As the original phase space is unknown, the first step
is the reconstruction of a phase space based on observed
variables. The clue for such a possibility is provided by
the embedding theorems (Whitney 1936; Takens 1981;
Sauer et al. 1991). Because the variabilities observed
in the atmosphere–ocean system are wave motions of
various scales, it is reasonable to consider a phase space
as some manifolds. According to the embedding theo-
rem of Whitney (1936), for a low-dimensional manifold,
any linearly independent variables derived from the sys-
tem can serve as coordinates that span the phase space.
In another words, a phase space can be understood as
arbitrary coordinates that describe the underlying sys-
tem, with the following two constraints [see Sauer et
al. (1991), for a precise definition].

1) The trajectories in the reconstructed phase space
should be approximately on a manifold. There
should be no intersection of trajectories, that is, two
trajectories can be very close but never meet (unique-
ness). This also means that distinctively different
states in physical space must be distinctively sepa-
rated in phase space. To avoid crossing of trajectories
of a chaotic system, the minimum dimension should
be three.

2) The direction of time must be preserved such that
the trajectories can be described on a manifold with
definite orbit structures. In this way, the direction in
which the trajectory evolves in phase space is a one-
to-one correspondence to the direction in which an
observed wave propagates in physical space (e.g.,
Wang 1994; Fraedrich et al. 1993; Wang et al. 1995).

In reality, such a low-dimensional attractor may not
even exist to the precision of its very definition, or it
may exist, but in a higher-dimensional phase space.
However, this does not need to deter us from using a
low-dimensional manifold to approximate a specific part
or a particular aspect of the observed dynamics or phys-
ical reality (Sauer et al. 1991; R. Wang 1994). The sub-
sequent application in section 4 indeed suggests that the
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variability in the SST field associated with El Niño–La
Niña can be effectively embedded into a three-dimen-
sional phase space [see Wang and Wang (2000) for de-
tails]. The resulting prediction may serve here as a mea-
sure of how good such an assumption is.

Apparently, there are many different ways to con-
struct a phase space (e.g., Sauer et al. 1991; Fraedrich
and Wang 1993; Fraedrich et al. 1993; R. Wang 1994).
The phase space used in the present context is consid-
ered as a hyperplane (or a manifold), spanned by the
relevant space–time extended principal components de-
rived from the predictor field. The ST-PCs are the pro-
jection of the SST anomaly field, over a specific region,
onto the space–time extended EOFs (ST-EOFs), which
are derived from diagonalizing the cross-time-lagged
covariance matrix (Weare and Nasstrom 1982; Wang
1991; Fraedrich et al. 1993), which is equivalent to the
MSSA (Plaut and Vautard 1994). The ST-EOFs serve
here only as a prescribed basis (coordinates) for the
phase space, VL , Rm, containing all the observed
states of the SST. In the subsequent discussion, yz ∈
VL , Rm represents the projection of the SST anomaly
field onto m ST-EOFs, that is, a point in the m-dimen-
sional phase space spanned by these ST-EOFs at the
time z.

The maximum time lag of covariance matrix is also
referred to as the time window w, which is chosen to
be 12 months for seasonal forecasting purposes. As the
ST-EOF patterns contain both spatial and temporal de-
pendencies, the corresponding ST-PCs reflect the spa-
tial–temporal correlated variability of the monthly SST
field. Thus the values of the ST-PCs at a specific month,
yz ∈ VL , Rm, define a state point in the m-dimensional
phase space, equivalent to a space–time coherent struc-
ture in physical space, reflecting the statistical state of
the SST for the past 12 months corresponding to the
ST-EOFs. This may be what we need for seasonal pre-
diction; the seasonal climate is a statistical state of the
daily weather for the whole season, which may not nec-
essarily be influenced so much by an SST anomaly at
a particular time, but by how the anomaly evolves dur-
ing the past year. Note that, in such a long time span,
the observed time evolution of the SST field also carries
information about the influence from the atmospheric
motion.

Now the question is, Which ST-PCs should be con-
sidered and how many variables should be retained? It
must be stressed that, unlike the classical (ST-)EOF-
based statistical analysis, with a more or less arbitrary
truncation concerning the number of EOFs retained, in
the present context of phase space reconstruction, only
those ST-PCs are chosen which are found to be relevant
to the seasonal scales by proper diagnostic tools, such
as spectra or cross-time-lagged correlation analyses.
Thus the order of the (ST-)EOFs or (ST-)PCs just serves
as a convenient mark for notation and does not play any
role in phase space reconstruction. The only decisive
factor is the dynamics that the ST-PCs represent. Con-

sidering that the coordinates of the same manifold are
coupled variables in the same sense as a simple linear
oscillator, u 5 cos(t) and y 5 sin(t) in the phase space
spanned by (u, y), the ST-PCs that describe the same
manifold should be significantly correlated at the lag
time equivalent to a quarter of its averaged cycle (Wang
et al. 1995 and the references therein). This is the basic
reason for using the cross-time-lagged correlation of the
ST-PCs to determine which ST-PCs should be retained
for phase space reconstruction (R. Wang 1994).

The nearest neighborhood of a given state yt ∈ V is
defined as the subset D(yt) , VL, whose elements {yz

∈ D(yt), z 5 1, 2, . . . , N(d)} satisfy the condition |yt

2 yz | , d, where z ± t is a generic time, d . 0 is a
prescribed value, and N(d) is the maximum number of
neighbors. To ensure that D(yt) , VL is as much along
the manifold as possible, the phase space is renormal-
ized such that the geometrical shape of D(yt) , VL

becomes a three-dimensional elliptic ball, with the flat
side perpendicular to the radius.

b. Prediction models and predictability

The prediction models can be generalized as a relation
that projects the initial state yt onto the future state of
the predictand, Q t1t , under a certain function G;

Qt1t 5 G(yt) 1 e, y ∈ V , Rm, (1)

where V is the phase space containing all possible states
of y. The initial time of prediction is denoted by t, with
the lead time t $ 0, defined as the time span between
the end of the latest observation and the beginning of
the predictand (Barnston 1994). The parameter e is as-
sociated with the prediction errors. Note that, in the
present context, Q is the anomaly of a seasonal SAT at
a given station. The value of Q can be continuous or
categorical numbers, depending on whether the predic-
tion is on a real or categorical basis. The establishment
of G changes according to whether the prediction is on
a linear or nonlinear basis.

For linear prediction, the projection function G is
commonly specified by a linear regression:

5 A 1 B · ,TQ̂ yt1t t (2)

where is the predicted value of Q (in contrast to theQ̂
observed), yT is the transpose of y 5 (y1, y2, . . . , ym)
∈ V, B 5 (b1, b2, . . . , bm) is the coefficient matrix,
and A is a constant. Both A and B are usually derived
from minimizing the forecast error e in (1), based on
the whole learning set VL. The source of predictability
here is derived directly from the linear correlation be-
tween y and Q t1t . There are other forms of linear mod-
els, but most of them can be described in the form of
(2), by an appropriate preparation (e.g., transformation)
of y and Q t1t . Thus, the linear prediction for a given
predictand (Q, at a station) relies on a linear relation
(2), optimized along a single line in the phase space V,
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which distinguishes only two different phases of op-
posite poles.

In contrast, the nonlinear prediction realizes that the
relation (1) may depend on the current phase, which
may not happen to be on the line derived from the linear
regression (2). In particular, there may be regime be-
havior that linear relation cannot handle properly. To
tackle this problem, the relation (1) has to be established
such that G changes according to the geometrical po-
sition of yt ∈ Rm. This is possible when the establish-
ment of the relation (1) is based on the nearest neigh-
borhood [D(yt)] of the initial state yt ∈ VL, instead of
the entire learning set VL, as in (2).

There are apparently different ways to formulate a
nonlinear prediction scheme [see Eckmann and Ruelle
(1985); Elsner and Tsonis (1992); Abarbanel et al.
(1993) for a review]. The nearest neighborhood ap-
proach is, however, one of the most straightforward
methods, with clear physics in terms of regimes and
phase relations, which enables us to analyze the origin
of predictive skills, as well as how and why the skills
change with the phase. Neural network, for instance, is
a powerful nonlinear scheme based on ‘‘black box’’
statistics, where one can tune the parameters to arrive
at a good prediction (e.g., Elsner and Tsonis 1992; Tan-
gang et al. 1998), but can see neither the phase relation
between the predictand and predictors, nor the origin of
skills.

Assume that there is a one-to-one correspondence be-
tween a given state yz ∈ VL and the value of the pre-
dictand Qz1t at a given station. The predictability at yt

may be defined as the probability of finding Qz1t in the
same categorical state as Q t1t for all yz ∈ D(yt) , VL

and z ± t. It is thus clear that the predictability may
change with the geometrical position of yt or with the
time t (as the state yt evolves with t), which can be
easily demonstrated in phase space [see Ziehmann-
Schlumbohm et al. (1995) for an example with the Lo-
renz model]. The predictability for Q on the basis of y
may be measured by the ensemble average of the local
predictability for all available yt ∈ V.

The central point for nonlinear prediction is the es-
tablishment of a linear relation based on all yz ∈ D(yt)
, VL (z ± t) and the corresponding predictand (Qt1t )
to give a realistic description of the phase relation be-
tween the forcing field and the predictand. This relation
typically changes with the initial state yt. In another
words, a nonlinear model (1) in the present context is
locally linear but globally nonlinear. As a preliminary
application, the most simple kind of linear relation, the
composite anomaly, is assumed in the present study,
which means that the output of the nonlinear prediction
is the composite anomaly of the seasonal SAT (Qz1t ),
corresponding to all neighbors in D(yt):

1
Q̂ 5 Q(y ),Ot1t zN(d)

for all y ∈ D(y ) , V , z ± t, (3)z t L

where N(d) is the number of nearest neighbors in D(yt)
, VL. As N(d) changes with d, one often prefers a fixed
number of neighbors to fixed size d. For this simple
model, we found that the prediction is optimal when the
size of D(yt) is taken as 15% of the total samples in VL

[section 4b(2)].
For categorical forecasting, the probability of each of

the three categories, A, N, and B (representing above,
near, and below normal, respectively), is estimated using
all yz ∈ D(yt) (z ± t). This is used in the present paper
as a diagnostic tool to reveal the origin of the predictive
skill. For real application, we shall focus only on the
composite anomaly (3).

Now, one may ask, is there any dynamic or physical
basis for the proposed nonlinear scheme? The answer
is apparent; each state, yt, in the phase space corre-
sponds to a space–time coherent structure in the physical
space. As the ST-PCs are projections of the predictor
field onto its ST-EOF basis, with a time window of w
months, yt ∈ Rm defines a space–time coherent structure
of the predictor field for the time period from t 2 w 1
1 to t. Given a specific time evolution of the spatial
distribution of the predictor field for the last w 5 12
months, the prediction equations (1) or (4) yield a spatial
distribution of the predictand Q (station by station) at
lead time t . In this sense, the proposed methodology is
a kind of ‘‘down-scaling’’ forecasting scheme. The dy-
namic processes that relate SST anomaly and the sea-
sonal mean SAT are not explicitly incorporated in the
scheme. However, they are accounted for, in a sense, by
the use of the nearest neighbors, under the assumption
that similar (space–time) SST time evolution induces
similar climate anomaly. For a definite set of predictors,
we cannot expect a good prediction for every station.
What we can hope for is that at least the stations over
some specific geographical regions will be predicted
with useful skills (see sections 4–6).

Predictions based on (1) are referred to as one-step
models in Vautard et al. (1996). Alternatively, this can
be decomposed into two steps by first extrapolating yt

∈ V up to yt1t ∈ V and then establishing the relation
between yt1t ∈ V and Qt1t :

yt1t 5 G1(yt) 1 e1, and Qt1t 5 G2(yt1t ) 1 e2. (4)

Note that G1 is a projection of V , Rm onto itself, called
the extrapolating stage, which can be carried out by
nonlinear (see, e.g., Farmer and Sidorovich 1987; Cas-
dagli 1991; Abarbanel et al. 1993) or linear methods
(Vautard et al. 1996, 1999). Because there is no lead
time involved, G2 is called the specification stage. Ac-
cordingly, the methods following these two steps are
referred to as two-step ST-PC models (Vautard et al.
1996). It should be pointed out that, though the one-
step (1) and two-step (4) ST-PC models draw infor-
mation from the same source, the two-step model may
profit from the predictability inherent to the predictors
whose timescales are typically larger (and thus more
predictable) than those of the predictand. This is par-
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FIG. 1. Geographical distribution of the correlation skill scores
derived from the persistence forecasting of the winter (DJF) SAT
using (a) the preceding autumn (SON) SAT anomaly (t 5 0) and (b)
the preceding winter SAT anomaly (t 5 11). The 95% significant
level is 0.26. The stations used are marked with dots.

ticularly true for longer lead time. In practice, however,
the difference in the predictive skills between the two
types of models may not be statistically significant for
limited datasets. In certain instances, with linear (or
close to linear) ST-PC models, the two-step models ap-
pear to be better than the one-step models (Vautard et
al. 1996, 1999). Without losing generality, we shall stick
to the one-step model (1) in the present study.

c. Optimal linear combination

At the final stage, the predictions are optimized ac-
cording to

ˆ ˆ ˆQ 5 aQ 1 (1 2 a)Q or1 2

ˆ ˆ ˆ ˆQ 5 Q 1 a(Q 2 Q ), (5)2 1 2

where and are the predicted values based onˆ ˆQ Q1 2

predictors derived from two separate SST key forcing
regions. Here, a is a weight derived from minimizing
the prediction error e 5 (Q 2 )2, based on K verifi-Q̂
cation periods,

K

k k k kˆ ˆ ˆ(Q 2 Q )(Q 2 Q )O 2 1 2
k51a 5 , (6)K

k k 2ˆ ˆ(Q 2 Q )O 1 2
k51

where K is the total number of verification periods under
the cross-validation scheme and Q is the observed value.
So, a, calculated for each station, reflects the contri-
bution of the corresponding key forcing regions to the
skill score at that station [see section 6b(3) for further
discussion].

d. Measures of predictive skills

Evaluation of the prediction skill is carried out under
a cross-validation scheme (Michaelsen 1987; Barnston
and Van den Dool 1993; Vautard et al. 1996) by suc-
cessively removing a part of the data for verification
(VV), while using the rest (VL) to build the models. In
each case, one of the successive 2-yr periods starting
from the initial time of prediction is removed from the
available data, to guarantee independence of the exper-
iments. For prediction of winter (DJF) SAT with 0 lead,
the verification period is from October 1952 to Septem-
ber 1954; the next is from October 1953 and to Sep-
tember 1955, and so on, leading to a total number of K
5 44 verification periods. Based on this total, the skill
scores are evaluated and parameters (a) for the BLUE
(5) are estimated for each of the L 5 164 stations. Note
that in evaluating the BLUE skill, the year to be pre-
dicted is not used for estimating a in (6), in order to
avoid optimal ‘‘fitting.’’

The correlation skill score is used for examining the
spatial behavior of a prediction model. Since the pre-
diction is carried out station by station for all L 5 164

stations over North America, and the resulting predic-
tion is expressed in terms of anomaly, the skill score
for station i is defined as the correlation between the
observed (Q) and the predicted SAT over all the KQ̂
available verification periods:

K

ˆQ QO ki ki
k51r 5 for i 5 1, 2, . . . , L. (7)i
K K

2 2ˆQ QO Oki ki!k51 k51

For a significant test, Vautard et al. (1999) have esti-
mated the correlation of two uncorrelated random pro-
cesses using 1000 randomly generated realizations with
40 cases in each realization. It was found that the 95%
significance level is at 0.26. Figures 1a and 1b give the
results for persistence forecasting of winter (DJF) SATs
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using the anomalies of the preceding autumn [Septem-
ber–October–November (SON), t 5 0] and winter (DJF,
t 5 11), respectively. When judged by the above cri-
terion, the persistence method displays a significant skill
for regions along the Pacific and the Atlantic coasts for
t 5 0, whereas for t 5 11 months, hardly any skill
regions are observed. In the subsequent application, per-
sistence forecasting with t 5 0 (Fig. 1a) will be used
as an objective model to compare with the predictive
skills of the proposed models.

In order to show the time changes of the predictive
skill, the pattern correlation between the predicted and
observed SAT anomalies are calculated for the kth ver-
ification period:

L

ˆQ QO ki ki
i51§ 5 , (8)k
L L

2 2ˆQ QO Oki ki!i51 i51

where L is the total number of stations (predictands). It
should be pointed out that the pattern correlation (8) is
used only as a relative measure to reveal the time chang-
es of predictive skills. Therefore, we did not consider
the degree of freedom. In fact, pattern correlation is a
rather misleading measure, particularly for seasonal pre-
diction based on statistical methods. For instance, one
set of predictors may give very good prediction for one
climate zone, while the other zones are poorly predicted.
In this case, the pattern correlation may be very bad,
due to the parts which are poorly predicted. However,
this does not need to invalidate the model, for no one
would expect that such a simple statistical model could
predict every zone correctly. This can be easily under-
stood, as the key SST forcing region for one zone may
not be the same for the other. This cannot be properly
distinguished by pattern correlation. For such a purpose,
the geographical distribution of the predictive skills is
more relevant.

4. ENSO signals and the predictability of seasonal
SAT

a. Extracting the ENSO signals

The ENSO signal is typically exhibited in the tropical
Pacific SST field, with a large-scale SST anomaly pat-
tern expanding and retreating from the east coast during
its time evolution (e.g., Rasmusson and Carpenter
1982). The importance of the ENSO in seasonal pre-
diction has been well established both from statistical
studies (see, e.g., Walker and Bliss 1932; Bjerknes 1969;
Barnett 1981; Barnett and Preisendorfer 1987; Barnston
1994) and from dynamic modeling [see Palmer and An-
derson (1994), for a review]. In order to examine the
predictability of seasonal climate associated with the
ENSO, it is necessary to extract the ENSO signals from
the observational data. For this purpose, the ST-EOF

analysis is applied to the tropical Pacific SST (308S–
308N, on 101 grids) with the time window of 12 months,
because this timescale gives sufficient time resolution
for seasonal changes and at the same time provides a
suitable ‘‘background condition’’ of the current state,
with respect to interannual variabilities. The space–time
patterns of the resulting ST-EOFs show the physical
aspects of the ENSO evolution. The projection of the
SST field onto their ST-EOF basis leads to the ST-PCs,
a new set of variables that describe the ENSO evolution.
The major issue concerning the determination of the
minimum number of variables that describe the ENSO
signals is presented in Wang and Wang (2000) with
detailed diagnostic analysis and dynamic justifications.

The resulting analysis shows that the first three lead-
ing ST-EOFs (Fig. 2) and the corresponding ST-PCs
(Fig. 3) can describe the essential part of the ENSO
evolution. ST-EOF 1 (Fig. 2, left-hand panels) at every
time lag within the window, is characterized by a pos-
itive anomaly along the eastern and central Pacific that
is almost symmetric about the equator, with its center
moving slightly westward with the time; in ST-EOF2,
the mature phase of El Niño is changed gradually to the
mature phase of La Niña. The transition takes about
three to four months, which is short compared to the
mature phase. Correspondingly, the first two ST-PCs
represent, respectively, the mature phase of the El Niño
(or La Niña) and the transition from La Niña to El Niño
(or vice versa). The cross-time-lagged correlation be-
tween the ST-PCs shows that the first two are signifi-
cantly correlated at the time lag (or lead) of a quarter
of the average ENSO cycles (Fig. 4), implying that the
first two ST-PCs jointly depict a wavelike motion of the
ENSO in a way not unlike the sine and cosine jointly
describing a linear oscillator. The ENSO signals, how-
ever, appear to be more than a simple linear oscillation,
as is evident from the phase portrait (Fig. 5) and the
broad-banded nature of the power spectra of the cor-
responding ST-PCs (Fig. 3, right-hand panels). The most
significant variabilities are found around the cycles of
two to six years. The phase portrait also shows strong
evidence of phase-locking of the ENSO onset to the
annual cycle (see Fig. 5).

ST-PC3 is characterized by interdecadal changes in
the onset phase of the ENSO, which, however, cannot
be revealed by power spectrum analysis (see Fig. 3, left-
hand panels). The time series of the ST-PC3 displays a
significant regime behavior in time. For instance, there
is a significant difference before and after 1972, as is
noticed by Wang (1995). The corresponding ST-EOF3

(Fig. 2, right-hand panels) displays a space–time struc-
ture on a different stage of the ENSO onset that is re-
vealed by the composite study in Wang (1995). The
time-lagged correlation analysis (Fig. 4) shows that ST-
PC3 leads ST-PC1 by a quarter of the average ENSO
life cycle, implying that they, too, describe the same
manifold.

Thus the first three leading ST-PCs derived from the
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FIG. 2. The spatial patterns of ST-EOFs 1–3 at lag 11, 8, 4, and 0, respectively. The maximum time lag of 11 months is equivalent to a
time window of 12 months. Note that only 4 of the 12 time lags are displayed. Note also that ‘‘0 lag time’’ here and ‘‘0 lead time’’ in the
subsequent application means the same initial time of prediction.

FIG. 3. ST-PCs 1–3 derived from the projection of the monthly
tropical Pacific SST (after seasonal cycle and interannual trend are
removed) onto the corresponding ST-EOFs in Fig. 2. The right panel
shows their power spectra with both coordinates being in log10 scales.

tropical SST give a full picture of the ENSO evolution,
and there seems to be no need to include more in this
context. Indeed, only these three ST-PCs are signifi-
cantly correlated at the lead and lag time of about a
quarter of the ENSO life cycle (Fig. 4), implying that
they describe the same manifold. The phase space
spanned by these three variables, y 5 (y1, y2, y3), con-
tains all the observed states of the ENSO system and
sufficiently describes its time evolution (Wang and
Wang 2000). Figure 5 shows that the basic dynamics of
the ENSO display near-cyclic trajectories in a two-di-
mensional plane. The third dimension (ST-PC3) pushes
the trajectory up and down the 2D plane, in particular
during the 1982–83 extraordinary El Niño year and the
abnormal El Niño–La Niña events from 1974 to 1977
(Wang 1995).

It should be pointed out that the use of the first three
ST-PCs has nothing to do with an arbitrary truncation
of the ST-EOFs based on a certain mathematical cri-
terion about the eigenvalues, nor with the purpose of
data condensation. We started by assuming that the
ENSO is a low-dimensional attractor. Then we set out
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FIG. 4. Autocorrelation of ST-PC1 (solid line) and its cross-time-
lagged correlations with ST-PCs 2–4, respectively.

FIG. 5. Phase portrait of the ENSO signals on a two-dimensional
plane spanned by ST-EOF 1 and ST-EOF 2. Marked are the positions
of the initial state of prediction, yt, with t 5 Nov for each verification
period.

to look for suitable variables that best describe the
ENSO evolution. The assumption that the ENSO is a
low-dimensional attractor is rooted in the studies based
on dynamic modeling. For instance, using a low-order
dynamic system model derived from the first principles,
Wang and Fang (1996) are able to show the essential
characteristics of the ENSO evolution, such as the ir-
regularity and phase-locking to the annual cycle. The
well-known Zebiak–Cane ENSO model (Zebiak and
Cane 1987) produces basically a low-dimensional os-
cillation (Chang et al. 1995). However, there is no gen-
eral agreement concerning the exact dimensionality,
which is typically the case when dealing with a complex
natural system such as the ENSO and global or regional
climate systems. Indeed, it is impossible to prove a
unique dimensionality for such a system, because the
dimension may change due to many factors, including,
for instance, the time- and space scale range and res-
olution, sophistication of the model, noise level, and the
method used for dimension estimation. In the present
study, the monthly observational data are used for con-
structing the phase space. Thus, our major concern is
timescales larger than a month. In the subsequent anal-
ysis, a three-dimensional phase will be used to describe
the ENSO signals, assuming that the SST associated
with the basic dynamics of the ENSO represented by
the given dataset can be effectively described in this 3D
phase space. The observed dynamics are well explained
in simple models such as Wang and Fang (1996). This
should be sufficient to justify the above assumption.
However, this does not need to confuse the conclusions
derived from other models showing higher dimension-
ality, for a model is, after all, an approximation to the
reality, and its dimension typically depends on factors
such as those mentioned above, particularly when there
are various kinds of noise involved. One may still argue
about the dimensionality of the ENSO, but a good model
should be able to produce valuable predictions. For in-
stance, a recent paper by Tangang et al. (1998) indicates

that optimal skill can be achieved for the prediction of
ENSO using a neural network method in a low-dimen-
sional ST-PC space.

Now we have a three-dimensional phase space
spanned by the first three leading ST-PCs, y 5
(y1, y2, y3), derived from the tropical Pacific monthly
mean SST field. In the following, we shall deal with
this question: From this three-dimensional phase space
where the ENSO signals sit, what can we learn about
the seasonal SAT over North America based on (1)? In
the present study, we focus only on the prediction of
the winter (DJF) SAT with lead time t 5 0, that is,
using November as the initial time, t, to predict the
following winter (DJF) mean SAT. The initial positions
for all the available yt are marked in Fig. 5.

b. Geographical distribution of skill scores

1) LINEAR REGRESSION MODEL

For linear prediction of the SAT at a given station
denoted by Q, the G in (1) is specified by a linear re-
gression equation (2) using the ENSO signals, y 5
(y1, y2, y3) (Fig. 3), as predictors. The source of pre-
dictive skill for (2) is derived directly from the linear
correlation between Q and y 5 (y1, y2, y3). Figure 6
shows the spatial distribution of correlation coefficients
between the winter (DJF) Q and yt 5 (y1, y2, y3) for t
5 November. The significance of the correlations in Fig.
6 gives, in part, a measure for the predictability based
on the linear regression model. Note that ST-PC1 and
ST-PC2 represent different phases of the ENSO. There-
fore, the spatial distribution of correlation coefficients
reflect, in part, how the SATs in different geographical
regions respond linearly to different phases of the
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FIG. 6. Geographical distribution of the correlation for the winter
(DJF) SAT and ENSO signals (ST-PCs 1–3; see Fig. 3) at the lead
time t 5 0.

ENSO. There is a low correlation area along 358–408N
for both ST-PC1 and ST-PC2, implying bad predictive
skill in this region. The correlation pattern with ST-PC
3 (Fig. 6c) is similar to that of ST-PC 1 (Fig. 6a) but
less significant. However, the correlation seems to be
more significant on the eastern part of the continent,
which is in contrast to the correlation pattern with ST-
PC 1.

Figure 7a shows the geographical distribution of the
correlation skill scores derived from (7) for the predic-
tion of the winter SATs based on (2). When compared
with Fig. 6, it becomes immediately clear that only those
highly correlated regions are significantly (linearly) pre-
dictable. When using the 0.3 isoline as a significance
criterion, the most significantly predicted areas are along
the Pacific coast and the Gulf of Mexico, quite similar
to those obtained by persistence forecasting (see Fig.
1a). Note that there is a large region with negative skill
scores in the linear model (Fig. 7a) that coincides with
the area where the linear correlations in Fig. 6 are close
to 0. From a statistical view point, the negative skill

score in the linear model is the result of covariance
degeneracy (Barnston and Van den Dool 1993). From
a dynamic viewpoint, however, this degeneracy may
come from the fact that the linear model cannot handle
the phase relation of the underlying system. Note that,
in the viewpoint of dynamic system theory, near-zero
linear correlation comes from the fact that two variables
are sometimes positively and sometimes negatively cor-
related, depending on their phase relation. To better deal
with this situation, a nonlinear relationship needs to be
established. It is thus expected that the phase space ap-
proaches provide new possibilities for producing better
predictive skills.

2) NONLINEAR MODELS IN PHASE SPACE

As discussed in section 3b, the predictability for a
given lead time t is defined as the probability of finding
the same state of Q t1t for all Qz1t corresponding to yz

∈ D(yt) , VL and t ± z. In general, the predictability
defined in this way changes with the size of the nearest
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FIG. 7. The geographical distributions of the correlation skill score (r) for the winter (DJF) SAT for lead time t 5 0 using (a) linear
regression model and nonlinear model (3) with the nearest neighborhood [D(yt)], respectively composed of nearest (b) 15%, (c) 10%, and
(d) 20% of the total samples. The same ENSO signals (ST-PCs 1–3; see Fig. 3) are used as predictors for both linear and nonlinear models.
Areas with r . 0.26 (roughly in accordance with the 0.3 isolines) are considered as displaying significant skill.

neighborhood D(yt) for nonlinear systems, but not for
linear systems. Figure 8a gives an example of diagnostic
results about predictability as a function of the size of
D(yt), for a regional mean winter (DJF) SAT over the
southwestern United States, with 47 3 3 samples (three
samples per year). The predictand for this particular
example is classified into one of three categorical states:
below (B), near (N), or above (A) normal. For an ar-
bitrary initial state of the ENSO, yt, there is an observed
state of SAT, say Q t 5 A. The predictability can then
be understood as the probability of finding Qz 5 A,
corresponding to each yz ∈ D(yt) , VL (z ± t). The
same is true for Q t 5 B and N. The results in Fig. 8
show clearly that the predictability is derived from a
small neighborhood and that, when the neighborhood is
increased to 30% of the total sample space, the resulting
prediction is no different from random noise.

The same result can be obtained by examining the
chance of making incorrect predictions for a given initial
state, yt, corresponding to the true value of Q t 5 B. In
this case, the chance of finding Qz 5 A or N, corre-
sponding to each yz ∈ D(yt) , VL (z ± t), increases
with the size of D(yt), as is evident from Fig. 8b. The
same is true for the initial state being N or A (Figs.
8c,d). The probability of making correct and incorrect
predictions for each of the three categories converges
to 0.33, a probability expected from random noise, as
the size of D(yt) increases. These reflect a certain non-
linearity of the underlying phase relation. Note that for
Q 5 A (Fig. 8d), the probability of making correct
forecasting is higher than expected from random noise,
even with very large D(yt), due to the linear correlation
between the El Niño and the SAT over that region. Thus,
above-normal cases (A) in that region are relatively easy
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FIG. 8. (a) The probability of finding an arbitrary winter (DJF) SAT Qz in the same categorical
state as Qt corresponding to each yz ∈ VL , R3 in the nearest neighborhood of yt ∈ V , R3,
where yt represents the ENSO signals for t 5 Nov (see Fig. 5) and Q 5 A (above normal), N
(near normal), or B (below normal), as in Vautard et al. (1996). The total available number of
samples is 131 (three per year). The figure shows how the probability of correctly predicted
number of Qs changes as the number of neighbors increased from 1 to 30. (b)–(d) The same as
(a) but also plotted are the probabilities of the incorrectly predicted categories (see text).

to predict (Figs. 8a,d), even with linear models. The
predictability, however, is smaller than what is expected
from a nonlinear model with a smaller neighborhood.
Note also that the near-normal state (N) is the most
difficult to predict correctly (Figs. 8a,c), for both linear
and nonlinear models, which seems to be consistent with
the conclusion in Van den Dool and Toth (1991). It is
apparent that all of these characteristics may change
with the climate zone to be predicted and with the key
SST forcing regions from which the predictors are de-
rived.

From the above results, it seems reasonable to con-
clude that the closest neighborhood yields the best pre-
diction. It is true, on average, based on categorical pre-
diction schemes. However, as the system is not perfect,
there are still chances to produce very bad forecasting
once in a while, as Figs. 8b–d show. To derive a sta-
tistically stable forecast, a locally linear relation should
be established between the predictors (y ∈ VL) and the
predictand (Q), instead of the one-to-one correspon-
dence used by the categorical prediction schemes (or
analogs), as discussed in section 3b. For this, we need
to use all members in D(yt) , VL, as in Vautard et al.
(1996, 1999), instead of the single closest one. Herein
lies the essential difference between a linear and a non-
linear model: for the former, relation (2) is established
based on the whole learning set VL, whereas the latter
is derived only from D(yt) , VL, thus locally linear,

but globally nonlinear (section 3b). For the present ap-
plication, we used a simple composite anomaly (3) of
all Q’s corresponding to D(yt) , VL as the output of
the prediction model (1). We found that 15% of nearest
neighbors extracted from all available data in VL often
yields optimal results. Figure 7b gives the geographical
distribution of the skill scores for the prediction of the
DJF SATs at the lead time t 5 0, based on the three-
dimensional phase space y, spanned by y 5 (y1, y3, y3),
ST-PCs (Fig. 3). The initial states, yt (t 5 November),
are marked with points in the two-dimensional phase
portrait in Fig. 5, which shows apparent uneven clus-
tering of the state points, representing regime behavior
and phase-locking (Wang and Wang 2000).

Two striking facts are observed from Fig. 7b, as com-
pared with the linear model (Fig. 7a), as well as per-
sistence forecasting (Fig. 1a): first, the average skill
score is much improved with the highest predictable
regions covering a large area of the continent, except
for the southeastern part of the subtropical region and
the regions along the northeastern coast. This is in sharp
contrast to the linear regression and persistence models.
Second, the regions with negative skill scores in the
linear regression model (Fig. 7a) almost disappeared in
the nonlinear model (Fig. 7b). Moreover, it seems that
the linear prediction produces slightly better skill scores
for the subtropical region (along the border between
Mexico and the United States and the Gulf of Mexico),
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FIG. 9. Pattern correlation (8) between the predicted and observed
winter (DJF) SATs over North America with 164 stations for each
cross-validation period based on the linear regression method (upper
panel) and the nonlinear composite model (lower panel), with the
size of nearest neighborhood [D(yt)] composed of 15% of the avail-
able data in VL. The models used are the same as in Fig. 7. For
comparison, ST-PC1 from Fig. 3 is also plotted (dash lines), and the
El Niño years are marked with dots at the bottom.

FIG. 10. (Top) 9-yr running mean of the pattern correlation derived
from Fig. 9 for linear (dashed line) and nonlinear (solid line) pre-
dictions. (Bottom) The same but derived from Fig. 17, the results
after the application of the BLUE to two (ENSO and Atlantic SST,
solid line) and three predictions (ENSO, Atlantic, and North Pacific
SSTs, dashed line), respectively (see Fig. 15).

while the nonlinear method works better in mid- and
high latitudes, implying a stronger nonlinear response
(phase relation) of the extratropical SATs to the tropical
ENSO.

To demonstrate that the nonlinear prediction is robust
with respect to the choice of the D(yt) size, Figs. 7c, d
give the same prediction as Fig. 7b, but with D(yt) con-
taining respectively 10% (Fig. 7c) and 20% (Fig. 7d)
of the available data in VL. Note that they are almost
the same as Fig. 7b. The gain in the predictive skill
compared with the linear and the persistence models is
derived from the improved identification of the phase
relation between the predictor and predictand fields,
which is not difficult to understand when considering
that the relation between the predictors and the predic-
tand is a function of the state y ∈ V. In general, the
predictability may also change with y ∈ V.

3) THE TIME BEHAVIOR OF THE PREDICTIVE SKILL

Figure 9 gives the pattern correlation (8) between the
predicted and observed winter SATs for each of the K
5 44 verification periods from 1953 to 1996. For com-
parison with the ENSO signal, ST-PC1 from Fig. 3 is
also plotted as dashed lines and the El Niño years are
marked at the bottom of the figures. The following can
be observed.

1) The nonlinear method is better than the linear re-
gression method in that the correlation skill scores
of the former are higher, on average, and more stable

in time (Fig. 10, upper panel) and that there are fewer
negative scores (Fig. 9).

2) The change of the skill scores with time does not
appear to be particularly related to the ENSO phase,
indicating that some other factors (such as the At-
lantic SST) may have stronger influence on the win-
ter SATs in the years when the skills are small or
negative. This may particularly be the case when the
SST distribution in the tropical Pacific region is close
to climate mean.

3) There are strong indications of an interdecadal var-
iability of the correlation scores in both linear and
nonlinear models, which is more clearly demonstrat-
ed in Fig. 10 (upper panel) by their 9-yr moving
average. This implies that the interdecadal variability
of the atmospheric–oceanic system may possibly
modulate the influence of ENSO on the atmosphere.
For instance, in Trenberth (1990), interdecadal cli-
mate change is linked to the frequency of El Niño–
La Niña events; Wang (1995) shows there is an in-
terdecadal change of the ENSO onset and that there
is a significant difference in the ENSO onset before
and after 1972. Note that both the linear and the
nonlinear models do indeed display different time
behaviors before and after 1972. This result does not
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FIG. 11. The first three leading ST-PCs derived from Atlantic
monthly SST after the seasonal cycle and interannual linear trend are
removed. The time window used is 12 months. The right-hand panels
show their power spectra in log–log plots.

seem to be influenced by the detrending in the SST
field.

The change of the predictive skill with time may gen-
erally be attributed to the fact that there is an intrinsic
change of predictability with the location of the initial
points (see Fig. 5 for the above example). Similar results
are also observed in other dynamic models (Ziehmann-
Schlumbohm et al. 1995). It is thus not surprising that
the lowest predictive skills are found when the initial
state (yt) is close to the climate mean (yt 5 0). The
predictive skill may also be modulated by other low-
frequency variabilities that are relatively independent of
that of the ENSO, such as the interdecadal changes in
the Atlantic SST. It is expected that the predictability
based on the ENSO signal is lower when the amplitude
of the Atlantic SST anomaly is high, and that the ENSO
signal plays a full role when all other parts of SST are
close to climate mean. This is partially demonstrated by
the apparent coincidence between the low skill from
1966 to 1979 (Fig. 10) and the significant anomaly of
the Atlantic SST during this period [see section 6b(3)
for further discussion].

5. Other key SST forcing regions and the
predictability of seasonal SAT

a. Atlantic SST

In order to investigate other key SST forcing regions
that influence the seasonal SAT and thus contribute to
the predictive skill scores, we carried out a similar anal-
ysis with the Atlantic monthly SST using the same data
source from 308S to 658N. The first three leading ST-
EOFs (not shown) represent the SST anomaly on the
western part of mid- and high-latitudes (ST-EOF1), the
contrast between the western and eastern parts of the
mid- and high-latitudes (ST-EOF2), and the coupled
anomaly between western subtropical SST (Gulf
Stream) and the eastern part of the high-latitude SST.
The fourth ST-EOF reflects mainly the variability of the
Gulf Stream region and the high-latitude Atlantic. The
corresponding ST-PCs (Fig. 11, left-hand panel) capture
the main feature of the variability of the Atlantic SST.
Unlike the ENSO signals, the Atlantic SST is dominated
by interdecadal variabilities, as is evident from the spec-
tra of the ST-PC1 (Fig. 11, right-hand panel). Thus the
timescale of this ST-PC goes far beyond the seasonal
scale. Tests with this component show that no significant
contribution to the seasonal predictive skill can be ob-
served, particularly for the nonlinear model. On the oth-
er hand, ST-PC2, ST-PC3, and ST-PC4 have timescales
relevant to the seasonal climate, and they are cross-
correlated with each other at different time lags and all
related more or less to SST anomaly associated with the
Gulf Stream. Thus we took a subspace spanned by the
second, third, and fourth ST-PCs, denoted by y 5
(y2, y3, y4), for the subsequent analysis.

The linear correlation patterns (Fig. 12) between the

SST ST-PCs and SAT appear to be very different from
those obtained with the ENSO signals. There is no sig-
nificantly correlated areas with ST-PC1 (figure not
shown), due to the fact that the timescale of this ST-PC
goes far beyond seasonal scales. However, the corre-
lation with the other three ST-PCs (see Fig. 12) are
significant in the midlatitudes. Note that in these re-
gions, the correlation with the ENSO signal is generally
poor (cf. Figs. 6 and 12). It seems that the ENSO signals
are linearly correlated with the SATs of the subtropical
and the more or less higher latitude regions, while At-
lantic SSTs are more related to the middle latitude
(around 408–608N). Thus, in this region, the linear mod-
el is expected to produce better predictions with the
Atlantic SST than with the ENSO signal based on (2).
Figure 13a shows, indeed, that around 508N the cor-
relation skill (r) based on (7) exceeds 0.40, far above
the persistence skill (Fig. 1).

Similarly, we performed nonlinear predictions of the
winter SAT with the nearest neighborhood approach,
using y 5 (y2, y3, y4) as the coordinates. The resulting
geographical distribution of the correlation skill scores
(r) and the time changes of the pattern correlation (r)
are given in the lower panels of Figs. 13 and 14, re-
spectively. Tests with different D(yt) size indicate that
the results are robust. Two striking facts can be observed
in comparison with the results based on the ENSO sig-
nals (Figs. 7 and 9).

First, there are fewer differences between linear and
nonlinear predictions with Atlantic SST than with the
ENSO signals. The nonlinear model is better than the
linear model, on average, but the most skillful regions,
found between 408 and 608N to the west of 908W, are
significantly improved in the nonlinear model, with the
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FIG. 12. The same as Fig. 6, but for the Atlantic ST-PCs 2–4
(see Fig. 11).

highest skill score exceeding 0.50. However, this im-
provement is less significant compared to that observed
in the linear and nonlinear predictions with the ENSO
signal (see Fig. 7). This may be due to the fact that the
dominant timescales of the Atlantic SST variability are
larger than the typical ENSO scales. In general, pro-
jecting much larger timescales onto seasonal scales
based on (1) leads to relations that are closer to linear.

Second, the predictive skill displays larger variability
both in geographical location and in verification period
than that obtained with the ENSO signals. The signif-
icant differences in geographical distribution and time
behavior of the skill scores indicate that the origin of
the predictive skill, with respect to the Atlantic SST, is
very different from that of ENSO predictors. This im-
plies a possibility for further improving the final skill
by an optimal linear combination (see section 6b for
details).

b. Extratropical North Pacific SST

We have also carried out linear and nonlinear pre-
dictions of seasonal SAT based on the ST-PCs derived
from extratropical North Pacific SST (308–758N). Sig-

nificant skill scores were found for the linear model in
the subtropical regions. The source of predictive skill
is the same as for the ENSO predictors, since an im-
portant part of the variability in the midlatitude Pacific
is related to the ENSO signal, as is evident from the
first ST-EOF derived from the global SST (figure omit-
ted). For the nonlinear model, the most significant re-
gions lie in the northwest of the continent and along the
northeast coast, indicating that the mid- and high-lati-
tude Pacific SST influences principally the mid- and
high-latitude winter SATs over North America. How-
ever, the pattern correlation skills (figure omitted)
change quite abruptly from year to year, indicating in-
stability of the predictive skill, both in space and in
time. This may be partially due to the fact that the sta-
tions located in the midlatitude and subtropical regions
have low average skill scores, resulting in large year-
to-year changes. It may also reflect the complications
of the influence of the midlatitude SST on the seasonal
SAT. Thus the information derived from this SST forc-
ing region can hardly be used directly for practical fore-
casting without further constraints from the atmospheric
components. However, it may be used to improve the
average skill score by a suitable linear (or nonlinear)
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FIG. 13. The same as Fig. 7, but derived from ST-PCs 2–4 of the
Atlantic SST.

FIG. 14. The same as Fig. 9, but the predictions are derived from
Fig. 13.

combination with other predictors, though not very of-
ten in the present application (see section 6.2).

6. Global SST and the predictability of seasonal
SAT

a. Characteristics of the global SST field

The global SST is dominated by ENSO signals, as is
reflected by its ST-EOF1 (figure omitted), which is char-
acterized by two anomaly centers with opposite signs,
indicating a significant negative correlation between the
tropical and midlatitude Pacific SSTs. The spatial struc-
ture of global ST-EOF 1 in the subtropical Pacific is
almost identical to that obtained from the tropical Pacific
SST alone (see Fig. 2a). Accordingly, the first ST-PC
represents the ENSO signal on its mature phase, like
the ST-PC 1 derived from the tropical Pacific (Fig. 3).
The rest of the ST-PCs represent the different phases of

the ENSO and other key forcing regions. It is not dif-
ficult to have a one-to-one correspondence between the
ST-PCs derived from regional SST and those from the
global SST, with the help of a suitable rotation. In the
present context, rotation of the ST-PCs is unnecessary
since the phase space they span is the same. It is suf-
ficient to know how many ST-PCs derived from the
global monthly SST contain the most relevant infor-
mation for seasonal forecasting. Our analysis showed
that about 10 ST-PCs derived from the global SST with
a time window of 12 months may reasonably well rep-
resent all the key SST forcing regions discussed earlier,
as suggested in Vautard et al. (1996, 1999). This number
is still too high for nearest neighborhood approaches.
In Vautard et al. (1999), the size of D(yt) is taken as
50% of the available data in VL, which is a reasonable
choice for a dimension larger than five, with the data
available. This is considered too large for nonlinear
methods used in the present context. When using re-
gression models based on D(yt) , VL, a larger D(yt)
size leads to predictions closer to the linear model,
though not the same.

In practice, one has to make compromises concerning
the choice for the number of ST-PCs for seasonal pre-
diction. In general, including more ST-PCs in the pre-
diction model means higher-dimensional phase space,
which may give better representation of the variability
for the SST field, but not necessarily yield good results
for seasonal forecasting, as high-dimension space re-
quires a larger number of samples to arrive at a robust
conclusion (Van den Dool 1994a). Moreover, for sea-
sonal prediction on an empirical basis, to excluded un-
wanted information is almost as important as to include
relevant information. Therefore, the choice for the pre-
dictors is very important for statistical predictions. The
understanding of physical relations is the key to making
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good choices. For instance, the significant correlation
between the Atlantic SST and the midlatitudes’ SAT
(Fig. 12) reflects influence of the former on the winter
jet, and the jet’s position in turn determines the SAT
anomaly in the midlatitudes. On the other hand, the
ENSO signals are less correlated with the midlatitudes’
SAT (Fig. 12), indicating that the position of the mid-
latitude jet is less sensitive to the ENSO than to the
Atlantic SST. The nonlinear prediction model used in
the present study does not explicitly contain the physical
laws that connect the SST anomaly with the seasonal
SAT. However, the use of the analogs is based on the
assumption that such laws exist. These are partially
manifested by the success of the resulting predictions
in the previous sections and in what follows.

b. Optimal linear combination of the predictions
derived from different key SST forcing regions

From the analysis in the previous sections it can be
concluded that each key forcing region has its own typ-
ical contribution to the skill scores for both linear and
nonlinear models. When using the global SST field, the
dimension may not need to be very high, but it has to
be high enough to include signals from these key SST
forcing regions. This is almost fatal for nonlinear pre-
dictions based on analog methods, due to the limitation
of the available data (Van den Dool 1994a). Moreover,
one has to be aware of the fact that the ENSO signal
dominates the global SST so much that the amplitude
of the loading patterns in other regions becomes less
significant for almost all of the EOF-based prediction
schemes. To make good use of the predictive skills from
each SST key forcing region, and to profit from a low-
dimensional phase space approach, we use the BLUE
(see Sarda et al. 1996) to extract the optimal predictions,
which are based on predictors respectively derived from
tropical Pacific (ENSO signals), Atlantic, and extra-
tropical Pacific monthly mean SSTs.

1) PREDICTIONS BASED ON ENSO SIGNALS AND

ATLANTIC SST

Figure 15a shows the correlation score for the winter
(DJF) SAT after optimal combination of the predictions
derived independently from ENSO signal (Q1) and At-
lantic SST (Q2), using the BLUE according to (5). As
expected, significant improvements in the predictive
skills are observed compared to the prediction based on
either of the two predictors in Figs. 7 and 13. The cor-
relation skill scores exceeding 0.3 cover most of the
continent, and there is a large area around 508N where
the skill score is close to 0.6. [The time behavior of the
skill scores, shown in Fig. 17 (upper panel), is more
stabilized, although there is still an interdecadal change
(see also Fig. 10, lower panel)]. Note that the evaluation
of the skill is based on 44 independent cases, and in
each case, the year to be predicted is not used for es-

timating a [see(6)], in order to avoid optimal fitting of
the two predictions.

To a certain extent, the weight a for each station,
derived from (6), on the basis of the observed and pre-
dicted values from the 44 verification periods, gives a
measure of the contribution to the predictive skill from
both SST forcing regions. From (5) it becomes imme-
diately clear that a . 0.5 means ENSO contributes more
to the predictive skill than Atlantic SST and vice versa.
Thus the geographical distribution of a provides an im-
portant clue to the origin of predictive skill or the impact
of the SST forcing on the seasonal climate. Figure 16a
shows that, aside from the western part (to the west of
908W) of the midlatitudes (around 508N), most of the
predictive skills are derived from the ENSO signal.

2) PREDICTIONS BASED ON ENSO SIGNAL, THE

ATLANTIC SST, AND THE EXTRATROPICAL

NORTH PACIFIC SST

The BLUE method (5) can be easily extended to in-
clude more predictions. In order to test whether we can
profit from the information derived from the extratrop-
ical North Pacific SST, we simply used the above BLUE
results as Q1 and the prediction derived from the ex-
tratropical North Pacific SST (see section 5b) as Q2, for
a further application of the BLUE based on (5). The
resulting predictive skills are shown in Figs. 15b and
17 (lower panel). There is a slight improvement of the
skill in that the area when the correlation skill score r
. 0.5 is increased (Fig. 15b). However, there is no
significant sign of further stabilizing the time behavior
of r (Figs. 17 and 10, lower panel). Figure 16b shows
that the weight a is greater than 0.5 everywhere, in-
dicating that the ENSO and the Atlantic SST contribute
the most to the predictive skill.

3) DISCUSSION

The above results show that a conceptually clear and
dynamically based statistical method can be developed
for seasonal prediction based on the low-dimensional
phase space. Due to the fact that different climate zones
respond differently to the same SST forcing, the pro-
posed method can often yield good prediction for certain
areas, based on a given key SST forcing region. Thus
it is not surprising that the BLUE applied to predictions
based on different key SST forcing regions can lead to
significant improvement of the final skill scores, com-
pared to the individual predictions based on either of
the three key SST forcing regions. The correlation skill
score averaged over all 164 stations is about 0.4 (see
Fig. 15), with a large area of the continent exceeding
0.5, implying that there is a great potential for practical
applications to seasonal forecasting along this line. Note
that the 95% significance level is at 0.26 (see section
3d and Fig. 1).

It should be pointed out that the application of the
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FIG. 15. The same as Fig. 7, but for the results after the application
of the BLUE (5) to (a) two and (b) three independent analog pre-
dictions carried out in three-dimensional phase space with D(yt) com-
posed of 15% of VL. The predictors of these models are derived from
tropical Pacific (Fig. 7), Atlantic (Fig. 13), and North Pacific SSTs,
respectively. The weight coefficient a for each station is derived from
44 verification periods under a cross-validation scheme according to
(6).

FIG. 16. The weights (a) used for the BLUE in Fig. 15.

BLUE can sometimes result in false skills if there are
stations with the weight a , 0, because negative weights
in (5) can convert negative scores into positive ones
(Livezey and Neumeister 1990). This often happens
when the individual prediction models produce system-
atic negative skill scores. It is particularly the case for
some linear models, due to statistical degeneracy when
the correlation between the predictors and predictand is
close to 0 (cf. Figs. 6 and 7a; also see Barnston and
Van den Dool 1993). Thus the negative weight (a)
should be avoided to diminish false skills. This can be
done by rendering a 5 0 in (5) whenever a , 0. In
this case, stations with a , 0 will not be used, which
is a reasonable decision. Another, more direct, way to
avoid false skill induced by the BLUE may be to use
only one prediction from one model for a given station
or climate zone, by choosing either a 5 0 or a 5 1 in
(5) instead of using 0 # a # 1 to combine predictions
from different models. This is the same as using dif-

ferent models to predict different climate zones. The
same principle can also be applied to different seasons.

In our present study, however, the nonlinear model
does not produce systematic negative skill scores. So
the above-mentioned issue is not a problem. Indeed,
although there are some negative scores in individual
models (see Figs. 7b and 13b), there are no negative
values of weight in the BLUE (see Fig. 16), implying
that the proposed nonlinear models are not likely to
produce systematic negative skill scores. The success
of the BLUE, in this context, lies in the fact that different
climate zones have different responses to each key SST
forcing region, leading to uneven geographical distri-
bution of predictive skills. The BLUE just picks up the
best predicted stations derived from each key SST forc-
ing to form an optimal ‘‘global’’ distribution (see Fig.
15).

Understanding the influence of interdecadal variabil-
ity on the seasonal predictive skill can undoubtedly im-
prove the skill for seasonal prediction. For instance,
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FIG. 17. The same as Fig. 9, but the pattern correlations are cal-
culated after application of the BLUE corresponding to Figs. 15 and
16. See Fig. 10 (lower panel) for their 9-yr tuning mean.

closer examination of long-term changes of the skill
score derived from ENSO (Fig. 10, upper panel) and
the ST-PC 1 of the Atlantic SST (Fig. 11) reveals that
the predictions based on the ENSO signals are the best
when the ST-PC 1 of the Atlantic SST is close to 0.
The worst skills were found in the 1970s when the neg-
ative values of the ST-PC 1 reached maximum. Con-
sidering that the ST-PC 1 represents the SST anomaly
in the North Atlantic, this implies that the ENSO pre-
dictors work most effectively when the North Atlantic
SST is close to climate mean. This indicates that the
North Atlantic SST, closely associated with the Northern
Atlantic Oscillation NAO observed in the atmosphere,
may change the impact of ENSO on the SAT over some
particular regions, through influencing the climate con-
ditions of the atmospheric circulation, such as the mean
positions of the trough and the midlatitude winter jet.
Thus it is not surprising that the incorporation of the
atmospheric components into the prediction scheme
based on SST forcing may lead to improvements of the
seasonal forecasting skill (Ting et al. 1996; Wang and
Van den Dool 2001, unpublished manuscript). Mean-
while, one may benefit from the low-frequency vari-
ability for seasonal predictions based on dynamically
based statistical models (e.g., Brunet and Vautard 1996).
All of these may also imply that the SST-based predic-
tion can be further improved by selecting prediction
models according to climate zone and season.

Being an effective method for optimal predictions,
the BLUE method is, after all, a linear combination of
the two (or more) predictions based on all verification
periods. Therefore, the joint impact (or phase relation
of the two forcing regions) in some specific years cannot
be fully captured based on the BLUE. There is a pos-
sibility of designing a nonlinear version of the BLUE,

given a sufficient number of independent verification
periods. Here, the results derived from dynamical mod-
els may help.

7. Concluding remarks

The central point of the present paper is that statistical
prediction of the seasonal climate can be made on a
dynamical basis in terms of a low-dimensional phase
space approach. The basis for such an approach is the
assumption that variabilities of the key SST forcing re-
gions relevant to seasonal prediction can be effectively
represented by a suitably constructed low-dimensional
phase space. In a low-dimensional phase space, the time
evolution of the predictors, such as the ENSO signal,
can be closely studied in terms of orbit structure and
probability measure, which allows a closer examination
of the phase relation with the predictand. The nearest
neighborhood approach profits from such a dynamical
basis, which allows an analysis of the origin of predic-
tive skill. Because the sources of the predictive skills
are different, the final prediction can be optimized based
on the BLUE applied to predictions derived from dif-
ferent SST forcing regions. Both the spatial distribution
(Fig. 15) and the time behavior (Fig. 17 and Fig. 10,
lower panel) of the skill scores indicate that meaningful
forecasting for practical applications can be expected
from the present scheme.

The seasonal predictability associated with a forcing
field can be conveniently examined on a low-dimensional
basis, leading to a clearer conceptual understanding of
the underlying system. The SST anomaly associated with
the ENSO signal can be effectively represented by a
phase space spanned by three ST-PCs derived from the
tropical Pacific SST. The low-dimensionality thus estab-
lished is consistent with the results derived from the dy-
namic system model (Wang and Fang 1995, 1996) and
the coupled numerical model (Chang et al. 1995). When
this three-dimensional phase space is used for the pre-
diction of winter SAT over North America, based on a
nonlinear method, significant skills with correlation
scores over 0.5 can be observed for most of the continent,
which is very significant when compared with the most
significant area of the persistence forecasting (about 0.3).
In the nonlinear model, regions with negative correlation
skill scores, which appear in most linear models, are
almost reduced to 0 (see Fig. 7).

Significant skill scores are also observed from the
Atlantic SST associated mainly with the changes of the
Gulf Stream using three-dimensional phase space
spanned by ST-PCs 2–4. The geographical distribution,
as well as the time behavior of the skill scores, are
different from those obtained with ENSO signals, in-
dicating the possibility of increasing the predictive skill
scores and stabilizing their time behavior by an optimal
linear combination of the predictions derived from these
two key SST forcing regions (Fig. 15). Using the best
linear unbiased estimates [see Sarda et al. (1996) and
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references therein], the mean correlation skill score is
increased by 46%. The area with a skill score higher
than 0.5 is increased significantly (cf. Figs. 7 and 15).
The increase of the skill scores due to extratropical
North Pacific SST is not so significant as the Atlantic
predictors, though still considerably significant (Fig.
15b). The gain of the predictive skill via BLUE is gen-
uine, for there are no systematic negative skill scores
in the individual phase space model and no negative
value is observed in the weight (a) for the BLUE (5),
as shown in Fig. 16.

It was also suggested that there is a great potential
to improve further the seasonal prediction by selecting
models and their predictors according to climate zone
and season. In the present application for winter SATs,
linear regression models can produce significant skill in
tropical and subtropical areas when using ENSO signals
as predictors. In midlatitudes, the nonlinear methods
produce the best prediction, while the linear regression
is the worst with negative skill scores (Fig. 7). In higher
latitude, though significant skill can also be observed
with linear models, the skill scores are more significant
with nonlinear models that are based on the nearest
neighborhood method. Moreover, the latter yield more
robust skill, in the sense that their significant skills
change less with geographical location or with the ver-
ification period, than those of linear models. These
changes are derived from the phase relation of the pre-
dictors and predictand which is subjected to modulations
by low-frequency fluctuation, such as interdecadal
changes [cf. Figs. 10 and 11, and see, e.g., Trenberth
(1990) and Wang (1995)].

The prediction of seasonal climate in phase space
relies very much on the possibility of constructing a
low-dimensional phase space based on observational
data. The present application indeed suggests such a
possibility with the help of physical insights derived
from diagnostic analysis and dynamic models (See sec-
tion 4a). It is expected that the seasonal prediction can
be further improved with the development of our knowl-
edge about the coupled dynamics of the climate system,
in particular, the atmosphere–ocean system (e.g., Wang
and Fang 1996; Chang et al. 1995) and their long time
behavior [e.g., Ghil et al. (1991); Pandolfo (1993) and
Haines (1994), for reviews], for which the role of ob-
servational study and GCM experiments is not to be
underestimated (Van den Dool 1994b; Palmer and An-
derson 1994). Meanwhile, looking for better (and sup-
plementary) predictors for a particular season and re-
gion, such as sea ice, snow cover, soil moisture, and so
on, is a never ending effort in the realm of statistical
forecasting.
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